skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luhar, Mitul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper evaluates the experimental generation of internal solitary waves (ISWs) in a miscible two-layer system with a free surface using a jet-array wavemaker (JAW). Unlike traditional gate-release experiments, the JAW system generates ISWs by forcing a prescribed vertical distribution of mass flux. Experiments examine three different layer-depth ratios, with ISW amplitudes up to the maximum allowed by the extended Korteweg-de Vries (eKdV) solution. Phase speeds and wave profiles are captured via planar laser-induced fluorescence and the velocity field is measured synchronously using particle imaging velocimetry. Measured properties are directly compared with the eKdV predictions. As expected, small- and intermediate-amplitude waves match well with the corresponding eKdV solutions, with errors in amplitude and phase speed below 10%. For large waves with amplitudes approaching the maximum allowed by the eKdV solution, the phase speed and the velocity profiles resemble the eKdV solution while the wave profiles are distorted following the trough. This can potentially be attributed to Kelvin-Helmholtz instabilities forming at the pycnocline. Larger errors are generally observed when the local Richardson number at the JAW inlet exceeds the threshold for instability. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. AbstractPrevious theoretical and simulation results indicate that anisotropic porous materials have the potential to reduce turbulent skin friction in wall-bounded flows. This study experimentally investigates the influence of anisotropy on the drag response of porous substrates. A family of anisotropic periodic lattices was manufactured using 3D printing. Rod spacing in different directions was varied systematically to achieve different ratios of streamwise, wall-normal, and spanwise bulk permeabilities ($$\kappa _{xx}$$ κ xx ,$$\kappa _{yy}$$ κ yy , and$$\kappa _{zz}$$ κ zz ). The 3D printed materials were flush-mounted in a benchtop water channel. Pressure drop measurements were taken in the fully developed region of the flow to systematically characterize drag for materials with anisotropy ratios$$\frac{\kappa _{xx}}{\kappa _{yy}} \in [0.035,28.6]$$ κ xx κ yy [ 0.035 , 28.6 ] . Results show that all materials lead to an increase in drag compared to the reference smooth wall case over the range of bulk Reynolds numbers tested ($$\hbox {Re}_b \in [500,4000]$$ Re b [ 500 , 4000 ] ). However, the relative increase in drag is lower for streamwise-preferential materials. We estimate that the wall-normal permeability for all tested cases exceeded the threshold identified in previous literature ($$\sqrt{\kappa _{yy}}^+> 0.4$$ κ yy + > 0.4 ) for the emergence of energetic spanwise rollers similar to Kelvin–Helmholtz vortices, which can increase drag. The results also indicate that porous walls exhibit a departure from laminar behavior at different values for bulk Reynolds numbers depending on the geometry. Graphical abstract 
    more » « less
  3. We present experiments on oscillating hydrofoils undergoing combined heaving and pitching motions, paying particular attention to connections between propulsive efficiency and coherent wake features extracted using modal analysis. Time-averaged forces and particle image velocimetry measurements of the flow field downstream of the foil are presented for a Reynolds number of Re=11000 and Strouhal numbers in the range St=0.16--0.35. These conditions produce 2S and 2P wake patterns, as well as a near-momentumless wake structure. A triple decomposition using the optimized dynamic mode decomposition method is employed to identify dominant modal components (or coherent structures) in the wake. These structures can be connected to wake instabilities predicted using spatial stability analyses. Examining the modal components of the wake provides insightful explanations into the transition from drag to thrust production, and conditions that lead to peak propulsive efficiency. In particular, we find modes that correspond to the primary vortex development in the wakes. Other modal components capture elements of bluff body shedding at Strouhal numbers below the optimum for peak propulsive efficiency and characteristics of separation for Strouhal numbers higher than the optimum. 
    more » « less
  4. We present experiments on oscillating hydrofoils undergoing combined heaving and pitching motions, paying particular attention to connections between propulsive efficiency and coherent wake features extracted using modal analysis. Time-averaged forces and particle image velocimetry measurements of the flow field downstream of the foil are presented for a Reynolds number of Re=11000 and Strouhal numbers in the range St=0.16–0.35 . These conditions produce 2S and 2P wake patterns, as well as a near-momentumless wake structure. A triple decomposition using the optimized dynamic mode decomposition method is employed to identify dominant modal components (or coherent structures) in the wake. These structures can be connected to wake instabilities predicted using spatial stability analyses. Examining the modal components of the wake provides insightful explanations into the transition from drag to thrust production, and conditions that lead to peak propulsive efficiency. In particular, we find modes that correspond to the primary vortex development in the wakes. Other modal components capture elements of bluff body shedding at Strouhal numbers below the optimum for peak propulsive efficiency and characteristics of separation for Strouhal numbers higher than the optimum. 
    more » « less